4 Practice!

Example 4. Find the scalar projection and vector projection of $\vec{b}=\langle 1,1,2\rangle$ onto $\vec{a}=\langle-2,3,1\rangle$.

$$
\begin{aligned}
& \operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\frac{-2+3+2}{\sqrt{4+9+1}}=\frac{3}{\sqrt{14}} \\
& \operatorname{proj}_{\vec{a}} \vec{b}=\left(\operatorname{comp}_{\vec{a}} \vec{b}\right) \frac{\vec{a}}{|\vec{a}|}=\frac{3}{\sqrt{14}} \frac{\langle-2,3,1\rangle}{\sqrt{14}}=\frac{3}{14}\langle-2,3,1\rangle=\left\langle-\frac{6}{14}, \frac{9}{14}, \frac{3}{14}\right\rangle
\end{aligned}
$$

Example 5. Find a unit vector that is orthogonal to both $\langle 2,0,-1\rangle$ and $\langle 0,1,-1\rangle$.
Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ be such a unit vector.
Then \vec{a} must satisfy:

$$
\begin{aligned}
& 2 a_{1}-a_{3}=0 \\
& a_{2}-a_{3}=0
\end{aligned} \Rightarrow \begin{aligned}
& a_{1}=\frac{a_{3}}{2} \\
& a_{2}=a_{3}
\end{aligned}
$$

Example 6. Determine whether the given vectors are orthogonal, parallel, or neither:
a. $\vec{a}=\langle 4,5,-2\rangle, \vec{b}=\langle 3,-1,5\rangle$
b. $\vec{u}=9 \vec{i}-6 \vec{j}+3 \vec{k}, \vec{v}=-6 \vec{i}+4 \vec{j}-2 \vec{k}$
a. \vec{a} and \vec{b} are not parallel,
since they are not scalar multiples of each other
$\vec{a} \cdot \vec{b}=12-5-10=-3$
$\Rightarrow \vec{a}$ and \vec{b} are not orthogonal
b. \vec{u} and \vec{v} are parallel, since $\vec{u}=-\frac{3}{2} \vec{v}$
$\vec{u} \cdot \vec{v}$ therefore are not orthogonal

